skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van_Tilburg, Ken"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the dynamics of the solar basin— the accumulated population of weakly-interacting particles on bound orbits in the Solar System. We focus on particles starting off on Sun-crossing orbits, corresponding to initial conditions of production inside the Sun, and investigate their evolution over the age of the Solar System. A combination of analytic methods, secular perturbation theory, and direct numerical integration of orbits sheds light on the long- and short-term evolution of a population of test particles orbiting the Sun and perturbed by the planets. Our main results are that the effective lifetime of a solar basin at Earth’s location is 1.20 ± 0.09 Gyr, and that there is annual (semi-annual) modulation of the basin density with known phase and amplitude at the fractional level of 6.5% (2.2%). These results have important implications for direct detection searches of solar basin particles, and the strong temporal modulation signature yields a robust discovery channel. Our simulations can also be interpreted in the context of gravitational capture of dark matter in the Solar System, with consequences for any dark-matter phenomenon that may occur below the local escape velocity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Two particles can exert forces on each other when embedded in a sea of weakly coupled particles. These “wake forces” occur whenever the source and target particles have quadratic interactions with the mediating particles; they are proportional to the ambient energy density and typically have a range of order the characteristic de Broglie wavelength of the background. The effect can be understood as source particles causing a disturbance in the background waves—a wake—which subsequently interacts with the target particles. Wake forces can be mediated by bosons or fermions, can have spin dependence, may be attractive or repulsive, and have a generally anisotropic spatial profile and range that depends on the phase-space distribution of the ambient particles. In this work, I investigate the application of wake forces to dark matter searches, recast existing limits on short-range forces into leading constraints on dark matter with quadratic couplings, and sketch out potential experimental modifications to optimize sensitivity. Wake forces occur in the Standard Model: the presence of the cosmic neutrino background induces a millimeter-range force about 22 orders of magnitude weaker than gravity. Wake forces may also be relevant in condensed-matter and atomic physics. 
    more » « less
  3. Axion dark matter (DM) constitutes an oscillating background that violates parity and time-reversal symmtries. Inside piezoelectric crystals, where parity is broken spontaneously, this axion background can result in a stress. We call this new phenomenon “the piezoaxionic effect.” When the frequency of axion DM matches the natural frequency of a bulk acoustic normal mode of the piezoelectric crystal, the piezoaxionic effect is resonantly enhanced and can be read out electrically via the piezoelectric effect. We explore all axion couplings that can give rise to the piezoaxionic effect—the most promising one is the defining coupling of the QCD axion, through the anomaly of the strong sector. We also point our another, subdominant phenomenon present in all dielectrics, namely the “electroaxionic effect.” An axion background can produce an electric displacement field in a crystal which in turn will give rise to a voltage across the crystal. The electroaxionic effect is again largest for the axion coupling to gluons. We find that this model-independent coupling of the QCD axion may be probed through the combination of the piezoaxionic and electroaxionic effects in piezoelectric crystals with aligned nuclear spins, with near-future experimental setups applicable for axion masses between 10^−11  eV and 10^−7  eV, a challenging range for most other detection concepts. 
    more » « less